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Considering the system uncertainties, such as parameter changes, modeling error, and external uncertainties, a radial basis function
neural network (RBFNN) controller using the direct inverse method with the satisfactory stability for improving universal function
approximation ability, convergence, and disturbance attenuation capability is advanced in this paper. The weight adaptation rule of
the RBFNN is obtained online by Lyapunov stability analysis method to guarantee the identification and tracking performances.
The simulation example for the position tracking control of PMSM is studied to illustrate the effectiveness and the applicability
of the proposed RBFNN-based direct inverse control method.

1. Introduction

In engineering systems, various uncertainties exist including
parameter uncertainties, unmodeled dynamics, and unknown
external disturbances, which often bring adverse effects to
stability and performance of the whole control systems. With
growing interests of high-precision control systems, how to
develop efficient control approaches to counteract the adverse
effects, caused by various uncertainties, is an active topic in
both the control theory and application [1], for example,
robust control [2], sliding model control [3, 4], adaptive
control [5, 6], backstepping control [7, 8], and disturbance
estimation-based compound control [8–12]. The effective-
ness of these control methods has been proved by their appli-
cations in some industrial areas. Unfortunately, due to the
need of exact knowledge of these control systems, the
improvement of performance is limited. Moreover, some of
these control methods lack online learning mechanism. The
control performance cannot be guaranteed while the indus-
trial systems are subjected to drastic internal and external
disturbances. Considering the limitation of the kinds of
disturbances estimate methods, some researches proposed
many other disturbances estimation methods [13, 14]. In

[13], an approximation-free funnel function is proposed to
guarantee the transient and asymptotic behavior of the
tracking performance. In order to approximate unknown
nonlinearities and to dramatically diminish the computa-
tional costs, a novel high-order neural network with only a
scalar weight is introduced in [14].

On the basis of approachability, neural networks have
been used to control unknown nonlinear dynamic systems,
since it can be proved that a neural network can be trained
to approximate any nonlinear function with the any given
accuracy under certain condition [15–19]. The use of neural
network learning ability avoids complex mathematical analy-
sis in solving the control problem of plant dynamics with
high complexity and nonlinearity. It is commonly known
that this ability of neural network is the obvious advantage
compared with traditional control methods.

However, effectively handling of the presence of distur-
bances is not well developed within the adaptive neural
network control method. So reinforcing adaptive neural
network controllers with disturbance attenuation capabilities
still remains a challenging task in enormous practical appli-
cations. An initial approach is provided in [20], since then,
many works have been emerged in [21–27]. Recently, the

Hindawi
Complexity
Volume 2018, Article ID 4034320, 13 pages
https://doi.org/10.1155/2018/4034320

http://orcid.org/0000-0003-4208-6319
https://doi.org/10.1155/2018/4034320


www.manaraa.com

output feedback control scheme combining a model-based
controller with a neural network feed-forward compensator
to model the unknown system dynamics is proposed in
[23, 24]. For the purpose of enhancing the stability, an addi-
tional robust controller is needed to be introduced to solve
the problems arising from approximation errors of the neural
network. The RBFNN-based disturbance observer is pro-
posed in [21, 22] to estimate the lumped disturbances, that
is, external disturbance from uncertain external condition
and internal disturbance caused by parameter variations or
modeling errors. A method of indirect adaptive neural
network control is presented in [23] to identify high-order
nonlinear continuous plant. Moreover, control parameters
will be updated with the identified model information to
increase the control performance.

Generally, weight matrix parameters of neural networks
are adjusted with gradient method; however, there is cur-
rently no systematic way of ensuring when these methods
will be successful. And analysis becomes very complicated
when learning and control are attempted simultaneously,
even the simplest control situation, such as a linear, time-
invariant process, and a linear feedback control law, becomes
a high-dimensional, coupled, nonlinear problem with the
addition of online tuning of the neural network controller
parameters [28]. And for the purpose of stable and efficient
online control, the sufficiently accurate identified informa-
tion system by using the gradient method is a necessary
prerequisite. That is to say, the off-line training which is
time-consuming is needed to provide a good starting point
for the online adaptive control. Application of gradient
optimization methods contains instability mechanisms, since
there exists parameter variations and internal and external
disturbances. Some adaptive neural network control
strategies employ the enhanced gradient algorithm or avoid
the gradient method to obtain high performance, since the
neural network trained by gradient algorithm may not
exactly reconstruct a certain required nonlinear function.
From the reliability point of view, adding more components
to a system will involve a higher probability of malfunction.
Motivated by the fact that the existence of a robust control
Lyapunov function is a necessary and sufficient condition
for robust stabilization via a suitable control law. In this
paper, an adaptive neural network-based direct inverse
controller (NBIC) with a RBFNN with guaranteed stability,
convergence, and disturbance attenuation capabilities is
investigated for the lumpeddisturbances, that is, the unknown
nonlinear system with parameter variations, unmodeled
dynamic response, and bounded external disturbances. The
scheme does not need to design extra controllers but only
using one RBFNN which acts not only on the feedback con-
troller but also can compensate for the external disturbances.
Thus, the structure of the control system is less complicated.
Theweights of RBFNN is tuned online based on the Lyapunov
theory which will not only guarantee the given performance
for this system but will also illuminate the relationships
between performance and the parameters of the NBIC.More-
over, the control scheme not only guarantees the stabilities of
the closed-loop system but also the tracking error will astrin-
gents to a small neighborhood of the origin. And the neural

network controller can obtain the benefits of model-based
control without a priori knowledge of system dynamics or
without the computational burden of classical dynamic. Also,
under the circumstance without disturbances, the proposed
control strategy can ensure the uniformultimate boundedness
property if tracking error with respect to a compact set around
the origin of any small area.

The structure of this article is as follows. In Section 2,
some theoretical preliminaries are addressed, including
mathematical notations, the description of the unknown
nonlinear system under research, control objective, and the
description of the RBFNN. In Section 3, the design procedure
of adaptive neural network using a direct inverse controller is
introduced and stability analysis is also given in this section.
The application on the high-precision position tracking of
PMSM servo system and the simulation comparisons and
analysis with the model-based inverse controller are pre-
sented in Section 4. Finally, some conclusions are described
in Section 5.

2. Preliminaries

Let R and Rn be the real number set and the n-dimensional
vector space, respectively. Define Rm×n and let m × n be
the real matrix space. The parameters of λmin P and
λmax P are the minimum and maximum eigenvalue of
matrix P, respectively. The symbol tr • indicates the
trajectory of the matrix • , • denotes the Euclidean
norm, W F is the Frobenius norm (F norm). Accord-
ing to the particularity of F norm, there are W 2

F =
∑i,j wi,j

2 = tr WWT = tr WTW and tr WWT = tr W
T

W −W ≤ W
T

W F − W
2
F

2.1. The Statement of the Problem. A class of single-input
single-output (SISO) nonlinear system with unknown dis-
turbances can be described with the following Brunovsky
form [29]:

x1 = x2,
⋮

xn−1 = xn,
xn = f x + g x u + d,
y = x1,

1

where x = x1, x2,… , xn T ∈ Rn means the state vector of this
system, u ∈ R and y ∈ R are the input and output, f x ∈ Rn

and g x ∈ Rn Rn are the unknown continuous functions
including internal uncertainties, and d denotes external dis-
turbances. In practice, many systems such as chemical reac-
tions, PMSMs, and robots are essentially nonlinear, whose
input variables may enter in the systems nonlinearly as
described by the above general form. In terms of nonlinear
control literatures, these systems are feedback linearizable
and have a relative degree equal to note. The smooth function
satisfies g x ≠ 0 with ∀x ∈ Rn, and it implies that the func-
tion g x is bounded away from zero with strictly positive
or negative value. The control goal addressed here is to find

2 Complexity



www.manaraa.com

a suitable control law u, so that the system output y can track
a bounded reference trajectory yd with a satisfactory accuracy
in the presence of internal disturbances caused by parameter
uncertainties and external disturbances d, while all involved
variables, such as u, y, x, and d, should be bounded.

Assumption 1. In the compact sets S ⊂ R, g x has inverse
function and boundary, as g x ≤ a <∞, and a is arbitrary
nonnegative constant.

Assumption 2. The system state variable x can be observable.

Assumption 3. The system external disturbance d is defined
by a known constant d0 > 0, that is d ≤ d0.

Assumption 4. The reference trajectory xd is continuous and
bounded known function of time with bounded known
derivatives up to the nth order.

The vectors xd and the tracking error e ∈ Rn are defined as
the following two equations.

xd = xd xd ⋯ xn−1d ∈ Rn,

e = x − xd = e1 e2 ⋯ en
T = e1 e1 ⋯ en−11

T

2

If the exact knowledge of the system dynamics and the
external disturbances can be obtained precisely, that is, func-
tions f x , d, and g x are known exactly, the following
model-based inverse controller (MBIC) can be obtained
as follows:

u = g−1 x r − f x − d , 3

r = xnd − kne1 − kn−1e2 −⋯− k1en, 4

where k1,… , kn is the system coefficients related to transient
performance of the closed-loop system. Therefore, the
closed-loop system constituted by (1), (2), (3), and (4) can
be redescribed as follows:

en1 = KTe, 5

where K = kn, kn−1,… , k1 T is the coefficient matrix. And
this matrix should be reasonably chosen so that the roots
of the Hurwitz polynomial p s = sn + k1s

n−1 +⋯ + kn are
all in the open left-half plane. Furthermore, (5) can be
overwritten as

e = Ae, 6

where A =

0 1 ⋯ ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮

0 0 ⋯ ⋯ 1
−kn −kn−1 −kn−2 ⋯ −k1

is a stable

matrix. By choosing Lyapunov, it represents as Ve = 1/2eTPe

and assumes that the positive-definite matrices P = PT > 0
and Q =QT > 0 satisfy the following:

ATP + PA = −Q 7

Then, taking the derivative of Ve along the trajectory of
(6), the following can be obtained:

Ve =
1
2 eTPe + eTPe

= 1
2 e

T PA + ATP e

= −
1
2 e

TQe

≤ −
1
2 λmin Q e 2 ≤ 0

8

On the basis of the Lyapunov theorem, the stability of this
closed-loop system can be ensured with control law (3). And
the tracking error e also can be astringented to zero. That is to
say, the system state variable x will asymptotically approxi-
mate the desired trajectory xd from any initial conditions,
that is, lim

t→∞
e = 0.

The control law of MBIC in (3) depends highly on the
exact knowledge of the nonlinear functions f x and g x
and external disturbance d of the nonlinear dynamics
systems. So, precise parameters in the dynamic model in
(1) have to be known. However, in many practical engineer-
ing projects, the perfect model of the system is difficult to
obtain and external disturbances are impossible to ignore
or impossible to measure directly or to obtain a precise
mechanism model for them. In an effort to solve the problem
of unknown nonlinearly parameterized f x and g x , adap-
tive control schemes employing function approximation
techniques have been studied in [15, 18, 21, 27]. In these
approaches, the nonlinear functions f x and g x , related
to the system dynamics, are usually approximated by esti-
mated function f̂ x, Ŵ and ĝ x, Ŵ with neural networks
or fuzzy systems, respectively. The parameter Ŵ denotes
the estimated weights. Therefore, additional precautions are
necessary to be made for avoiding possible singularities of
the control action, that is, ĝ x, Ŵ ≠ 0. In order to solve this
problem, the initial values of the NN weights are chosen
sufficiently close to the ideal values in [27]. Hence, offline
training phases are needed before the controller is put
into operation.

Remark 1. The MBIC method is unattractive to industry
applications since the exact knowledge of system dynamics
and lumped disturbances is hard to be obtained. But the
MBIC method could not be neglected in designing the con-
troller for uncertain nonlinear systems, as it is readily
understood with good performance. An MBIC method with
an appropriate compensative controller, proposed in [24],
is valid for controlling uncertain nonlinear MIMO system
with uncertainties and disturbances.

2.2. Description of RBFN. The radial basis function neural
network (RBFNN) with Gaussian activation functions is the
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most popular type of artificial neural network architectures.
The RBFNN with desirable features of local adjustment
of the weight and mathematical tractability has been
successfully applied to various issues [17, 21, 22, 30–32].
And RBFNN has been proven that, for any given real con-
tinuous function, there exists an RBFNN that can
uniformly approximate over a compact set with arbitrary
accuracy. A schematic diagram of a simple type of RBFNN
with three-layer is described in Figure 1.

The RBFNN is a kind of feed-forward neural networks,
which forms mappings from an input vector x to an output
vector u. From Figure 1, the structure of the employed
RBFNN, with n inputs, two outputs, and m hidden units,
can be described by

Φi x = exp −
x − ci

2

σ2i
, i = 1, 2,… ,m, 9

where x = x1, x2,… , xn T ∈ Rn is the input vector, Φ =
Φ1,Φ2,… ,Φm

T represents Gaussian activation function
of the hidden layer, and u = u1, u2 T is the RBFNN controller
output. The parameterWi,j is the weight, which connects the
jth output unit with the ith radial basis function, ci is defined
as the central values of the ith hidden layer node, and σi > 0
means the radius of Gaussian function, respectively. It can
be seen that each hidden node in the RBFNN computes an
output that depends on a radially symmetric function, and
the sum of the hidden layer outputs export to three-layer
with a linear weighted. It is common that stronger output
can be obtained when the input is nearer at the centroid of
the node.

It has been already proved that, under mild assumptions,
the RBFNN can approximate any continuous function over a
compact set to any degree of accuracy.

Assumption 5. The output of the neural network û x,W is
continuous with respect to its arguments for all finite x,W .

Assumption 6. For an arbitrarily small positive number ε0,
there is an optimal neural network output û x,W that
makes max û x,W∗ − u ≤ ε0.

Theoretical and numerical studies show that perfor-
mance of RBFNN is highly dependent on the locations of
centers. The structure of the RBFNN will be simpler with
the less number of second layer. Unfortunately, satisfactory
performance would not be easily obtained. On the contrary
side, the identification precision is higher with the bigger
number of hidden nodes, but the structure of RBFNN will
be very complicated. So, we choose the nearest neighbor clus-
tering algorithm to calculate the hidden nodes to fix the
structure of the neural network, which is ignored here,
similar to the authors’ the previous studies [17, 21, 22]. The
detailed process of this learning algorithm is also proposed
in these researches.

3. Design of the RBFNN-Based Direct Inverse
Control Scheme

Following the above conclusions in Section 2, the inverse
controller based on (3) cannot be acted, since the param-
eter variation and external disturbances is hard to get
directly. According to the superiorities of RBFNN, (3)
can be realized online and adaptively by the RBFNN,
which can be represented as (10). The structure of the
novel neural network using direct inverse control system
is shown in Figure 2.

u = g−1 x r − f x − d

= g−1 x r − f x − g−1 x d

= uf − uc

= ûf x,W1 − ûc x,W2

= 〠
m

i=1
W1iΦi x − 〠

m

i=1
W2iΦi x

= Ŵ
T
1Φ x − Ŵ

T
2Φ x

10

x
1

W
21

Φ
1

Φ
2

Φ
3

Φ
m

W
11

W
12

W
13

W
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u
1

u
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W
22
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23

W
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x
2
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Figure 1: The structure of a radial basis function network in three-layers.
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From (10) and Figure 2, we can see that the unknown
nonlinear function uf and uc are parameterized by an
RBFNN with output ûf x,W1 and ûc x,W2 , respectively.
And the matrices of adjustable weights are described by the
parameters W1 and W2. By calling up the NN theory and
Assumption 6, on a compact set Mx ⊂ Rn, for every ε > 0,
there exists a Gaussian basis function Φ x and two weights
vectors Ŵ1 ⊂Ω1 and Ŵ2 ⊂Ω2 such that

uf − Ŵ
T
1Φ x < ε, uc − Ŵ

T
2Φ x < ε 11

The compact sets of Ω1 ∈ Ŵ1 Ŵ1 ≤M and Ω2
∈ Ŵ2 Ŵ2 ≤M are the known subsets of Rm.
Therefore, the optimal weights W∗

1 and W∗
2 , which can

minimize the functions uf − Ŵ
T
1Φ x and uc − Ŵ

T
2Φ x ,

can be defined as

W∗
1 = arg min

Ŵ1∈Ω1

sup
x∈Mx

uf − ûf x, Ŵ1 ,

W∗
2 = arg min

Ŵ2∈Ω2
sup
x∈Mx

uc − ûc x, Ŵ2

12

The parameters of weight coefficient matrix Ŵ1 and Ŵ2
are estimated byW∗

1 andW
∗
2 .Mx andM represent a compact

set of system states and a design parameter, respectively. The
parameters W∗

1 and W∗
2 are constrained by W∗

1 ≤W1 max
and W∗

2 ≤W2 max.
The parameter η is described as the optimal estimation

error of neural network, that is,

η = u − ûπ x,W∗ 13

The estimation error η is bounded by a finite constant η0,
that is, η0 = sup u − û x,W∗ . The error between (10)

realize by the RBFNN and the ideal control law (3) can be
described as

u − û x,W = uf − uc − ûf x, Ŵ1 + ûc x, Ŵ2

= uf − ûf x,W∗
1 + ûf x,W∗

1 − ûf x, Ŵ1

− uc − ûc x,W∗
2 + ûc x,W∗

2 − ûc x, Ŵ2

= η1 +W
T
1Φ x − η2 −W

T
2Φ x

= η +W
T
1Φ x −W

T
2Φ x ,

14

where W1 =W∗
1 − Ŵ1, W2 =W∗

2 − Ŵ2, and η = η1 − η2. So,
the designed control law of the proposed NBIC can be
obtained as

u − û x,W1,W2 = u + η +W
T
1Φ x −W

T
2Φ x 15

The output of control law (15) is applied to (1), so the
closed-loop system can be described as

xn = f x + g x u + η +W
T
1Φ x −W

T
2Φ x + d

= f x + g x
r − f x − d

g x

+ g x η +W
T
1Φ x −W

T
2Φ x + d

= r + g x η +W
T
1Φ x −W

T
2Φ x

16

Let B = 0 0 ⋯ 1 T . The closed-loop system (16)
can be rewritten as follows combining with (4), (6), and (16):

e = Ae + B g x η +W
T
1Φ x −W

T
2Φ x 17

Although the imperfect neural network controller will
generally lead to degradation of the tracking performance,
the system can possess acceptable performance. If the neural

y
r e

+
−

dn

dtn

d

dt

d2

dt2

dn − 2

dtn − 2
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Figure 2: The structure of neural network-based direct inverse controller using RBF.
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network controller can approximate the ideal controller of the
system, that is, the controller estimation η→ 0 and the
parameter estimation errorW1 → 0 andW2 → 0, the tracking
error can be achieved to zero, that is, e→ 0 as t→∞.

3.1. The Stability Analysis. To synthesize an adaptive NBIC
with convergence capability, guaranteed stability, and dis-
turbance attenuation, it is first necessary to ensure the cho-
sen architecture of the RBFNN is capable. It can be seen
from the theoretical and numerical studies that the perfor-
mance of RBFNN highly depends on the locations of cen-
ters ci. The radius σi determines the number of the
clusters and affects the learning speed and accuracy. So,
the choice of appropriate ci and σi is particularly
significant. In order to make it easier to analyze, parame-
ters ci and σi of RBFNN are learned by the nearest neigh-
bor clustering algorithm and then kept fixed, since the

weight matrix parameters and the structure of RBFNN
can be adjusted by the nearest neighbor clustering algo-
rithm, synchronously. The next work is to determine the
adaptive weights of the NBIC according to Lyapunov
stability analysis. And the Lyapunov function can be given
as the follows:

V = 1
2 e

TPe + 1
2γ1

tr W
T
1W1 + 1

2γ2
tr W

T
2W2 , 18

where γ1, γ2 > 0 is the learning rate of RBFNN. Assume A
is a stable matrix, so there are positive-definite matrices
P = PT > 0 and Q =QT > 0 satisfy the following

ATP = PA = −Q 19

Along the trajectories of (17), the differential of
Lyapunov function V can be obtained as follows:

Noting that PT = P,ΦT x W1B
TPe = tr BTPeΦT x W1 ,

and ΦT x W2B
TPe = tr BTPeΦT x W2 , so the differential

Lyapunov function V can be re-described by

V = −
1
2 e

TQe + ηTBTPe + 1
γ1

tr γ1B
TPeΦT x W1 +W

T

1W1

+ 1
γ2

tr γ2B
TPeΦT x W2 +W

T

2W2

21

There is W = −Ŵ, if the weights adaptive update law of
the RBFNN is chosen as

Ŵ1 = γ1 Φ x eTPB − e Ŵ1 ,

Ŵ2 = γ2Φ x eTPB
22

Substituting (22) into (21) yields

V = −
1
2 e

TQe + ηTBTPe + e tr W
T
1 Ŵ1 23

According to the characteristic of the F norm in the pre-
liminaries, (23) can be changed as follows:

V = −
1
2 e

TQe + ηTBTPe + e tr W
T
1 W∗

1 −W1

≤ −
1
2 e

TQe + ηTBTPe + e W1 F
W∗

1 F − e W1
2
F

≤ −
1
2 λmin Q e 2 + η0λmax P e + e W1 F

W∗
1 F

− e W1
2
F

≤ − e 1
2 λmin Q e − W1 F

W1 max + W1
2
F
− η0λmax P

≤ − e 1
2 λmin Q e + W1 F

−
W1 max

2
2

−
1
4W

2
1 max − η0λmax P

24

V = 1
2 eTPe + eTPe + 1

γ1
tr W

T

1W1 + 1
γ2

tr W
T

2W2

= 1
2 eTP Ae + B η +W

T
1Φ x −W

T
2Φ x + eTAT + η +W

T
1Φ x −W

T
2Φ x

T
BTPe

+ 1
γ1

tr W
T

1W1 + 1
γ2

tr W
T

2W2

= 1
2 eT PA + ATP e + eTPBη + eTPBWT

1Φ x − eTPBWT
2Φ x + ηTBTPe +ΦT x W1B

TPe −ΦT x W2B
TPe

+ 1
γ1

tr W
T

1W1 + 1
γ2

tr W
T

2W2

= −
1
2 e

TQe + ηTBTPe +ΦT x W1B
TPe −ΦT x W2B

TPe + 1
γ1

tr W
T

1W1 + 1
γ2

tr W
T

2W2

20
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We can see that, in order to make V < 0, the following
inequality is presented

1
2 λmin Q e ≥

1
4W

2
1 max + η0λmax P , 25

or

W1 F
−
W1 max

2
2
≥
1
4W

2
1 max + η0λmax P 26

We can get

e ≥
2

λmin Q
η0λmax P + 1

4W
2
1 max , 27

or

W1 F
≥

1
4W

2
1 max + η0λmax P + W1 max

2 28

The closed-loop control system is supposed to be globally
stable, since all the variables of the RBFNN are bounded.
Better track performance can be received from (27) when
the characteristic value of Q is larger, and the smaller
upper-bound η0 of the estimation error of the RBFN, the
eigenvalues of P and the W1 max. That is to say, the conver-
gence problem of the weights of neural network is solvable,
and bounded neural network weights ensure bounded
control input.

3.2. Design Procedure of Neural Network-Based Direct
Inverse Controller with Disturbance Rejection. The design
steps about the proposed neural network-based direct inverse
controller (NBIC) with disturbance rejection are summarized
as follows:

Step 1. Specify the design parameters of the NBIC.
Specify k1, k2,… , kn to get all roots in the left-half plane

for the polynomial sn + k1s
n−1 +⋯ + kn = 0, solve the equa-

tion −Q = ATP + PA to obtain a symmetric matrix P based
on a positive-definite matrix Q, and choose the RBF neu-
ral network, specifying the inputs and the initial weights
of RBFNN.

Step 2. Structure the proposed method.
Considering the characteristics of the PMSM, choose a

small value as the central value of the hidden layer node ci

and an appropriate number of the cluster σi = 5. Further-
more, calculate the hidden node parameters ci, σ, i = 1,… ,m
based on the nearest neighbor clustering algorithm and
then obtain the structure of RBFNN. Calculate the hidden
node output vector Φ for input x, based on (9); get the
approximated control law û from (10).

Step 3. Adapt the weight parameters.
Apply the control law (10) to the dynamic system

expressed by (1). Use (22) to train the weight parameters
W1 andW2 of RBFN, with the initial weight matrix parame-
ters Wi,j for subtle differences.

4. Position Tracking Control of PMSM Servo
System with the Proposed NBIC Method

4.1. Control Design for PMSM Based on NBICMethod. In this
section, a numerical simulation example will be performed to
evaluate the effectiveness and applicability of the proposed
RBFNN-based direct inverse control method. The dynamic
equation of PMSM servo system can be described as

θ

ω
=

0 1

0 −
B
J

θ

ω
+

0
Kt

J

i∗q +
0
1
J

TL ,

y = 1 0
θ

ω
,

29

where the coefficient Kt means torque constant, ω represents
the angular velocity, and θ refers to rotor position. The
parameters B and J are the viscous friction coefficient and
the moment of inertia which are always vary with the differ-
ent working conditions, i∗q is the desired current input, and
TL denotes load torque which can be seen as the external
disturbances. The following state space can be obtained with
x1 = θ, x2 = ω, u = i∗q , and d = 1/J TL:

x1 = x2,

x2 = −
B
J
x2 +

Kt

J
u + d,

y = x1

30

PMSM servo systems always confront load disturbances,
friction force, and parameter uncertainties in some real
industrial applications. The performance of the whole system
will be degraded by these variations, disturbances, and
uncertainties. Moreover, the control performance usually
cannot be guaranteed with the fix control parameters. So,
the adaptive position tracking control based on the proposed
NBIC can be realized with as follows:

i∗q = K ‐1
t Jr + Bθ − K ‐1

t d

= Ŵ
T
1Φ x − Ŵ

T
2Φ x ,

r = θr − k1e − k2e

31

where the parameter θr represents the reference position, and
the position error between reference position and feedback
position of the closed-loop system is e = θr − θ. The details
of the proposed method for PMSM position control can be
seen from Figure 3.

4.2. Simulation Comparison Results. Simulations on PMSM
system have been performed to show the effectiveness of
the proposed control method. For the purpose of compari-
son, two control methods, that is, model-based inverse con-
troller (MBIC) and neural network-based adaptive direct
inverse controller (NBIC), are applied for the position
tracking control of PMSM servo system in the case of
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nominal model and the case under load disturbance and
parameter variations, respectively.

The parameters of PMSM are given as rated torque
TL = 2 4N ⋅m, torque constant Kt = 2 412Nm/A, moment
of inertia Jn = 1 068 × 10−3 kg ⋅m2, and viscous coefficient
B = 7 4 × 10−5 Nms/rad. The reference position is given as
θr = 0 5 sin t rad. For the sake of fair comparison, the
control inputs of the two algorithms have the same control
parameters. The sampling interval of the control process-
ing in the simulations is set at 0.001 s. The controller
parameters k1 and k2 are selected as k1 = 5 5 and k2 = 0 5,

respectively. So the system matrix A =
0 1

−0 5 −5 5
is the

Hurwitz matrix, further choosing Q =
8 0
0 8

, P =

13 3467 0 04
0 04 0 0135

, and γ = 5. The initial structure of the

RBFNN is chosen as 3–4–2. The input layer vector is chosen

as θr , e, e
T
, the function of hidden layer is defined based on

(9), the initial values of the weight matrices are selected as
W1 0 = 0 and W2 0 = 0, and the hidden nodes and the
radius of the RBFNN are decided by the nearest neighbor
clustering algorithm, that is, m = 4, σ = 4 5, and c = 0 1. A
nomenclature summarizing all the symbols throughout this
brief is furnished in Table 1.

There are many literatures that show the superiority with
respect to a standard approach, such as PID method and
MPC. The RBFNN-based control methods with the nearest
neighbor clustering algorithm, in the authors’ previous
studies [17, 21 and 22], verify that it permits to gain in terms
of performance with respect to a PID-based method. Com-
pared with the traditional control methods, the effectiveness
of the MBIC method is also proposed in many literatures.
Considering these facts, the effectiveness of the proposed
control method is only supported by a comparison with the
traditional model-based inverse controller (MBIC). The

RBFN

N
B
I
C

Generalized PMSM

1 1

sJs + B

d2

dt2

k1

k2

e

d

dt

d

𝜃r 𝜃𝜔i⁎q

Figure 3: The PMSM position tracking control diagram based on the proposed NBIC.

Table 1: Nomenclature.

Symbol Description (unit) Symbol Description (unit)

Rm×n m × n real matrix space tr • Trajectory of the matrix •
R Real number set • Euclidean norm

λmin P The minimum eigenvalue of matrix W F Frobenius norm (F norm)

λmax P The maximum eigenvalue of matrix u Input

x State vector of (1) y Output

Rn Unknown continuous functions including internal
uncertainties

yd , xd Bounded reference trajectory

d External disturbances a Arbitrarily nonnegative constant

f x Approximated by estimated function f̂ x, Ŵ with
neural networks systems

g x Approximated by estimated function ĝ x, Ŵ with neural
networks or fuzzy systems

Ŵ Estimated weights x Input vector

u RBFNN controller output Φ Gaussian activation function of the hidden layer

Wi, j Weight ci Central values of the ith hidden layer node

ε0 Arbitrarily small positive number û Output of the neural network

σi Number of the clusters η Estimation error

ω Angular velocity Kt Torque constant (Nm/A)

B Viscous friction coefficient (Nms/rad) θ Rotor position (rad)

i∗q Current input J Inertia (kg·m2)

θr Reference position TL Load torque (N·m)
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Figure 4: Position tracking and error performance in the nominal model case: (a) under the MBIC method and (b) under the NBIC method.
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NBIC based on RBFNN is training by the nearest neighbor
clustering algorithm with clustering radius, which can ensure
the real-time performance of the control method. So the
position tracking and error performance in the cases with
nominal model without any disturbance and with load dis-
turbances and parameter variations are shown in this paper
under MBIC and NBIC, respectively.

4.2.1. Case I: Comparison Results under Nominal Model. The
position tracking performance is tested under no load distur-
bances and parameter variations in this part, that is, in case of
a nominal model.

Figure 4 shows the position tracking and error perfor-
mance in the nominal model case under the MBIC and NBIC

methods, respectively. Figure 5 gives the output curves of the
controllers MBIC and NBIC under the nominal model case,
respectively. From Figure 4, we can see that both methods
have good dynamic position tracking and error perfor-
mances. However, obviously, the position tracking error
of the NBIC in Figure 4(b) is a little bigger than the MBIC
in Figure 4(a) at the beginning, since the initial network
approximations may be quite poor during the early stages
of learning. But due to the characteristics of the neural
network, the position tracking error of the NBIC will be
close to zero which is much better than the MBIC
method. It is can be indicated from Figure 5(b) that the
output of the MBIC asymptotically converged to a small
region because of the learning ability of the neural
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Figure 5: The output values of different control methods in the nominal model case: (a) the control output of MBIC and (b) the control
output of NBIC.
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Figure 6: Position tracking and error performance in case II: (a) the MBIC method and (b) the NBIC method.
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network. The NBIC controller has the satisfactory guaran-
teed stability and convergence capability.

4.2.2. Case II: Performance Comparisons with Load
Disturbances andParameterVariations.Theposition tracking
performance is tested under unknown load disturbances TL
and parameter variations in inertia J and viscous coefficient
B, which are supposed to happen on PMSM at the very
beginning. The system response of position tracking and
its errors are shown in Figure 6. In order to clarify the
comparison performances, the partial enlargement of the
position tracking for Figure 6 is represented in Figure 7.
The controller outputs i∗q are the same as those in Figure 5.

The position tracking performance of PMSM using the
MBIC is affected considerably by the load disturbances and
parameter variations based on Figure 6(a). It can be con-
cluded that superior robustness performance in such case of
uncertainties can be obtained with the proposed NBIC
method from Figure 6(b). At the beginning, we can see from
Figure 7(a) that the tracking performance is affected a little
by the case of parameters and load variations. As times goes
on, the NBIC makes the error between the position and the
reference very close to zero due to the self-learning and adap-
tive ability of the RBFNN. The results can be indicated from
Figure 7(b). The reason is that the parameter uncertainties
and disturbances are modelled by the neural network at every
time step and finally eliminated by feed forward channel.

5. Conclusion

Considering the adaptive self-learning ability of neural
networks, an adaptive neural network-based direct inverse
controller (NBIC) for a nonlinear system with uncertain
parameters and unknown external disturbances is presented
to achieve satisfactory tracking performance in this paper.
The proposed NBIC is realized by one RBFNN which has

two outputs, one output of the RBFNN acts as the main
controller to handle the parameter uncertainties, and the
other output of RBFNN is used to handle external distur-
bances. The problems of the uncertainties and the ability of
the self-adaptive control can all be handled in one single
neural network framework, since the accuracy of the system
identification and the ability of antidisturbance can satisfy
the requirements of the system. Moreover, the stable
online weight matrices adjustment mechanism of the
RBFNN is determined by the Lyapunov theory to achieve
the stability and guarantee attenuation of the disturbances.
Simulation results of position tracking for the PMSM
servo system illustrate that the proposed method NBIC has
the robust and effective control performance with good
disturbance rejection.
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